tags:
当前位置 : 首页 > 新闻中心 > 社会生活 > 正文

为什么瘦腿是反人类的?

来源:本站作者:时间:2024-04-06 20:18:53点击:

大家好。

大家都知道,目前市面上,牵扯到健身、健康的领域,都在不遗余力的给女性灌输一种观点:粗腿不好看,要想尽办法瘦腿。此外,还有关于消除假胯宽之类的观点,也与瘦腿一样,是反人类的。

此文是我在2021年三八女神节之际,以生理、生物学知识为立足点,写下此文,作为送给广大女性读者的一份礼物。

1. 瘦腿具有“四反”属性:反智、反美学、反健康、反人类。

2. 女性的腿部和臀部堆积脂肪,呈现梨型身材,这是自然的法则,是上帝的设计,是女性天生的性别特征,是天经地义的,是理所当然的。

3. 腿部和臀部堆积的脂肪,赋予了女性美丽、健康和吸引力。

4. 大量科学证据一致表明,腿细、腿部脂肪少,不健康,易得病,死得快

在谈论瘦腿的时候,我们必须要说说脂肪。按部位粗略划分,脂肪可分为:

1. 腰腹部/内脏脂肪(被叫做上身脂肪、中央脂肪)

2. 腿臀部脂肪(也叫四肢脂肪、下身脂肪)

判定某人脂肪堆积部位,的常见方式是计算腰臀比(Waist to Hip Ratio,WHR)或腰腿比(Waist to Thigh Ratio,WTR)。

顾名思义,腰臀比(WHR),就是腰围除以臀围。同理,腰腿比 (WTR) ,就是腰围除以腿围。

例如,腰围70CM,臀围100CM,腰臀比就是70/100=0.7。很明显,腰臀比越小,就显得腰细;腰臀比越大,就显得腰粗。

腰臀比或腰腿比越大,通常说明上半身脂肪堆积多,也被叫做中心性肥胖、腹部肥胖等[21,22,23,24];腰臀比或腰腿比越小,通常说明下半身脂肪堆积多。

这两类都是脂肪,但它们存在很大差别。

群体科学证据显示[12,13,14,15,16,17,18,19,20,21,35,36,37,38,39,58,99],上半身脂肪多/上半身肥胖,是造成各种代谢综合症(如高血压、高血脂、高血糖、胰岛素抵抗、糖尿病、动脉粥样硬化、冠心病)的主要原因。特别是对于亚洲人来说,更是如此[25,26,27,28]。

Bing等人对5057人的研究表明,上半身脂肪堆积较多(腰腿比-WTR较大)的人群,体重较大、较为肥胖和缺少锻炼,血脂/血压/血糖较高,或可能有心血管疾病史。

Earl等人对6277名美国人的研究表明,腰腿比与糖尿病和中心性肥胖密切相关。腰的相对粗、腿的相对细(WTR大)容易造成糖尿病和遭受后续并发症影响,其他研究也支持这样的结论[90,91,92,93]。

许多医学研究发现,与体重指数(BMI)、腰围和体脂率这几个指标相比,腰腿比(WTR)能同等的[101,102]、或是更好预测2型糖尿病[94,95,97,98,99]、缺血性心脏病[96]等。

对于下半身脂肪来说则不同。大量证据[31,32,33,34,40,41,42,43,44,81,82,83]表明,下半身脂肪多,或是大腿围越粗[95],越能降低各类疾病率(如糖尿病及其并发症)。

系列研究[115,116,117,118,119,120]观察到,腰臀比(WHR)和腰腿比(WTR)是无关于体重指数BMI、无关于腰围的糖尿病发病的重要独立预测因子。

换言之,对于这部分研究中的人群而言,哪怕体重指数大、腰围相对大,但是只要臀围和腿围更大,有较小的腰臀比和腰腿比,糖尿病风险就低。

Bando等人2006年研究了80名2型糖尿病患者的发现,腰腿比越小(可以理解为在同样的腰围下相对腿越粗),糖尿病病情控制得更好(糖化血红蛋白—HbA1c值越越低)。

CHOU等人2006年对台湾糖尿病人的研究了也发现,腰腿比(WTR)是一个非常好的指标,能充分反映糖尿病风险,腰腿比较小的人,面临的糖尿病和代谢疾病风险更小。

医学研究认为,这是因为腿臀部脂肪和腰腹部脂肪的代谢特性有所不同[45,46]。

腰腹部脂肪更容易释放出一种脂肪酸(非酯化脂肪酸—NEFA))进入血液,可在肝脏处堆积、促进脂肪肝形成[48,49,50,51,52],或是影响肝脏的糖代谢[55,56,85,86],以及 “危害”其他内脏和心血管;

相比之下,臀部和腿部的皮下脂肪层,是一个更安全的脂肪仓库,也具有与腹部不同的代谢活性,因此能发挥 “脂肪缓冲” 的作用[84,85]。

意思是说,进食脂肪后,游离脂肪、NEFA等,更容易被臀部和腿部皮下脂肪所吸收[32,86,87,88],进入血液的游离脂肪酸就较少。

腿部和臀部脂肪,能对肝脏、胰腺、肌肉等器官起到一定的保护作用[47,48,49,50,51,52,53],或者至少不会拖健康的后腿,不会导致胰岛素抵抗[54]。

大腿和臀部脂肪相对多(WTR小)的人有更健康的血糖和血脂水平[12,31,44,57]、更好的代谢指标(更低的血浆胰岛素和血糖耐受)[46,53,103,104]。

有趣的是,Neil等人研究了2322人后发现,大腿围越大,内脏脂肪越少。

当然,大腿不止包含脂肪,也包含肌肉。

从理论上说,糖尿病跟肌肉吸收糖的能力有关系,因为肌肉越小,肌肉所能消耗和吸取的糖就越少,那么血糖就容易升高,越容易发生胰岛素抵抗和糖尿病[29,30,32],医学观察到糖尿病人腿部的肌肉和脂肪比正常人更少[100]。

很明显,两性之间存在脂肪分布的差异[58,73,74]。

Vague等人1956年的研究,可能是最早证的文献,证明了男性更容易在上半身堆积脂肪[58]。

之后有更多研究证明了男性相对容易发生腹部肥胖,进而导致代谢类疾病,如血浆蛋白紊乱[65,66,67]、胰岛素抵抗、糖耐受受损等[68,69,70]。

这些代谢疾病并不是小事,因为有很多证据表明,它们可能演变成心血管类疾病,危及生命[75,76,77,78,79,80]、或是失明、肾衰竭等。并且,糖尿病人更容易感染新冠,肥胖者可能导致新冠药物失效。总之就很惨。

相比之下,女性的心血管疾病率[59,60,62,63,64]和2型糖尿病几率要低于男性,并且即便两性的身体脂肪总量大致相等时,也是如此[71,72]。

也就是说,如Lemieux等人的研究发现的那样,如果女性的2型糖尿病风险/糖耐受受损程度要达到跟男性相同的程度,她得要比男性更胖。

这种疾病率差异,主要是因为两性的脂肪分布差异造成的。女性的脂肪在腹部较少[1,2,3]、在腿臀部更多;而男性更多在上身(腹腔、内脏等)更多。

例如Lemieux等人1986年对149人的研究发现,如果脂肪总量相同,男性的内脏脂肪量可能是女性的2倍[89]。

这种两性的脂肪分布差异,又主要是因为性激素类型差异导致的:女性具有更高的雌激素水平。

一份2006年的研究中告诉我们:雌激素水平越高,四肢的脂肪分布越多;雌激素水平越高,躯干脂肪越少;雌激素水平越高,躯干与四肢脂肪的比值越低。

所以,雌激素通过减少内脏脂肪/上身脂肪,对女性起到了保护作用[59]。

更年期后,由于雌激素水平下降,女性的上身脂肪增多,腰臀比(WHR)、腰腿比(WTR)增大[4,5,6,7],心血管疾病率也逐渐增加到与男性类似的水平[61]。

有趣的是,如果给予更年期后的中老年女性更多的外源性雌激素,其腰腹部脂肪又会减少[3,8,9,10,11]。

Berit等人在《英国医学杂志》上发表了一项前瞻性研究[105],包含1436名男性和1380名女性。研究发现,大腿围与总死亡率、心血管疾病和冠心病独立相关。

"独立" 的意思,可以理解为,不需要考虑其它因素。即便是瘦子,即便腰细,腿围小,还是增加了死亡率。

该研究的贡献在于,发现了一个腿围的阈值,大约是60CM左右。

这意味着,对于被研究的群体来说,低于60CM的大腿围,早亡(没活到当地种群平均寿命就死亡)、心血管疾病、冠心病的死亡率明显增加。

但是,如果腿围大于这个值,上述风险也不再降低。

大部分资料显示,男性的理想体脂是15%左右,女性应当是25%左右。在这两个体脂率下,生理功能正常,偏高或偏低都不太好。

为什么女性的健康体脂比男性高?因为女性的内脏脂肪少于男性,仅为男性的一半[89](全身总脂肪量相等的前提下)。

所以,从这些数据我们可以看出,其实健身行业和女会员可能都对女性的体脂率要求过于严格,有点走极端的味道了:明明已经很瘦,却还要说自己胖。

当然,男人也是如此,大家可以回想下,朋友圈和网络上有多少年轻壮汉说自己骨瘦如柴、或是手无缚鸡之力的?

这种谦虚,两性都是一样的。

我们仔细想下,会发现一个显而易见的悖论。

目前似乎大多数女性健身者,都要使劲练臀,提升臀部肌肉,但却对腿部避之不及。她们都想要瘦腿,却从不说瘦臀。

明摆着的简单道理是,对女性来说,不管是臀部还是腿部脂肪堆积,都是雌激素的结果,雌激素导致细腰、粗腿、臀大。

腿和臀部脂肪,明明师出同宗,为何待遇却完全不同?

在我看来,产生这种双标观念的原因,主要是相关从业机构和从业者、媒体的宣传和误导。

历史反复证明,人类是非常容易被洗脑的。远的不说,就说二战之前发生在德国的纳粹崇拜、日本的神风突击队等历史事件,都历历在目。

很明显,这主要是经济和从业道德等方面的问题。

在市场经济下,买方说了算,服务是必须的、首要的;但是,健身机构和教练还负有引导义务:对客户提出的目标、方法、观念等,当中的不合理、不科学部分,进行循序渐进的纠正。

所以,教练和健身机构,应该是一种双重身份:服务和引导。只服务不引导,属于职责缺位。

不引导的原因,我想,可能是多方面的,包括欠缺纠正/引导的意识、业绩压力大、部分客户强硬、教练和机构自身的专业度不够等等。

在我看来,这些问题是可以去克服的,至少服务和引导之间的矛盾,是可以适当的平衡的。

我们团队(力训研究所)的教练,相对来说更注重对客户的引导和规劝,相当多的女性客户在认可我们专业度的基础之上,逐渐接受了相对科学的观念,更重视合理的力量训练,而不是避之不及。

对人类而言,下半身的肌肉和脂肪,是健康和美的关键。

下半身肥胖这句话,对女性来说,本身就是个伪命题。

因为肥胖,指的是不应堆积的脂肪;但是对于女性来说,脂肪在下半身的堆积,本来就是合理的、有益无害的,而这又是雌激素作用的结果。

众所周知,雌激素让女性保持光泽的毛发和皮肤,还有全世界都喜欢的细腰。

Devendra等人2002年的研究发现,女性腰臀比带来的吸引力和美感,不是基于特定文化、特定时代、特定国家和民族所固有的,也不是由现代西方世界的时尚引导或媒体所灌输的,而是全人类通用的,大多数国家和地区都如此。

“粗” 和 “细” 都是相对的,腰的细是相对于臀部和腿部的粗而言。

市面上有许多唯利是图的健身机构、无良商家和个人,传授各种所谓瘦腿的方法和动作等,实质上,是打着科普的名义坑蒙拐骗。

因为,所谓动作瘦腿,根本就不现实。

从生理上,依靠一些低强度、甚至是或者极低强度的力量训练动作,或者是半自重动作等,因为强度和训练量都不够,所以当然不会有什么明显的效果,基本上就是白练。

当然,动了会比不动好,但是这种小规模、低强度、消耗热量小的动作,对肌肉和脂肪都没有什么影响。

从性质上说,这是一些无良商家满足了一些小白和外行的盲目瘦腿心态,所以会有市场。

所谓有买卖就有杀害,有傻子就有骗子。

十有八九,我预计有些人可能会说:我知道女性腿部脂肪多肌肉多更健康,可是这样不美,大家觉得腿细了更好看。

问题在于:好不好看是谁说了算?

如果说是自己说了算,又怎么知道自己的审美不是被灌输、被赋予的?

当美的标准与自然的法则矛盾的时候,到底选择哪一个,是每个人的自由。

但在我看来,选择以人为本,选择以自然规律为主的审美,更具有合理性,因为健康才是一切的基础,这是非常简单的道理。

本文结束。

写在祝大家三八女神节之际,祝大家节日快乐,感谢阅读。

1. Wajchenberg BL. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev 2000;21:697–738.

2. Krotkiewski M, Bjorntorp P, Sjostrom L, Smith U. Impact of obesity on metabolism in men and women. Importance of regional adipose tissue distribution. J Clin Invest 1983;72:1150–62.

3. Mayes JS, Watson GH. Direct effects of sex steroid hormones on adipose tissues and obesity. Obes Rev 2004;5:197–216.

4. Carr MC. The emergence of the metabolic syndrome with menopause. J Clin Endocrinol Metab 2003;88:2404–11.

5. Tremollieres FA, Pouilles JM, Ribot CA. Relative influence of age and menopause on total and regional body composition changes in postmenopausal women. Am J Obstet Gynecol 1996;175:1594–600.

6. Toth MJ, Tchernof A, Sites CK, Poehlman ET. Effect of menopausal status on body composition and abdominal fat distribution. Int J Obes Relat Metab Disord 2000;24:226–31.

7. Bjorkelund C, Lissner L, Andersson S, Lapidus L, Bengtsson C. Reproductive history in relation to relative weight and fat distribution. Int J Obes Relat Metab Disord 1996;20:213–9.

8. Wajchenberg BL. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev 2000;21:697–738.

9. Espeland MA, Stefanick ML, Kritz-Silverstein D, Fineberg SE,Waclawiw MA, James MK, et al., Postmenopausal Estrogen-Progestin Interventions Study Investigators. Effect of postmenopausal hormone therapy on body weight and waist and hip girths. J Clin Endocrinol Metab 1997;82:1549–56.

10. Sumino H, Ichikawa S, Yoshida A, Murakami M, Kanda T, Mizunuma H, et al. Effects of hormone replacement therapy on weight, abdominal fat distribution, and lipid levels in Japanese postmenopausal women. Int J Obes Relat Metab Disord 2003;27:1044–51.

11. Arabi A, Garnero P, Porcher R, Pelissier C, Benhamou CL, Roux C. Changes in body composition during post-menopausal hormone therapy:a 2 year prospective study. Hum Reprod 2003;18:1747–52.

12. 1 Bjorntorp P. Metabolic implications of body fat distribution.Diabetes Care 1991; 14: 1132±1143.

13. Kissebah AH, Videlingum N, Murray R, et al. Relation of body fat distribution to metabolic complications of obesity. J Clin Endocrinol Metab 1982;54:254-60.

14. Abate N, Garg A, Peshock RM, StrayGundersen J, Grundy SM. Relationships of generalized and regional adiposity to insulin sensitivity in men. J Clin Invest 1995;96: 88-98.

15. Planas A, Clará A, Pou JM, et al. Relationship of obesity distribution and peripheral arterial occlusive disease in elderly men. Int J Obesity 2001;25:1068–70.

16. Kete I, Mariken, Volman M, et al. Superiority of skinfold measurements and waist over waist-to-hip ratio for determination of body fat distribution in a population-based cohort of Caucasian Dutch adults. Eur J Endocrinol 2007;156:655–61.

17. Alexander JK. Obesity and coronary heart disease. Am J Med Sci 2001;321:215–24.

18. Willett WC, Manson JE, Stampfer MJ, et al. Weight, weight change, and coronary heart disease in women: risk within the ‘normal’ weight range. JAMA 1995;273:461–5.

19. Goodpaster BH, Krishnaswami S, Harris TB, et al. Obesity, regional body fat distribution, and the metabolic syndrome in older men and women. Arch Intern Med 2005;165:777–83.

20. Garrison RJ, Higgins MW, Kannel WB. Obesity and coronary heart disease. Curr Opin Lipidol 1996;7:199–202.

21. Lakka HM, Lakka TA, Tuomilehto J, Salonen JT. Abdominal obesity is associated with increased risk of acute coronary events in men. Eur Heart J 2002;23:706–13.

22. Rexrode KM, Carey VJ, Hennekens CH, et al. Abdominal adiposity and coronary heart disease in women. JAMA 1998;280:1843–8.

23. Rexrode KM, Buring JE, Manson JE. Abdominal and total adiposity and risk of coronary heart disease in men. Int J Obes Relat Metab Disord 2001;25:1047–56.

24. Dobbelsteyn CJ, Joffres MR, MacLean DR, Flowerdew G. A comparative evaluation of waist circumference, waist-to-hip ratio and body mass index as indicators of cardiovascular risk factors. Int J Obesity 2001;25:652–61.

25. WHO Expert Consultation (2004) Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 363: 157-163.

26. World Health Organization (2017) Global Health Observatory (GHO) data.

27. Nishi N (2015) Monitoring Obesity Trends in Health Japan 21. J Nutr Sci Vitaminol (Tokyo) 61 Suppl: S17-19.

28. Tanaka H, Imai S, Nakade M, Imai E, Takimoto H (2016) The physical examination content of the Japanese National Health and Nutrition Survey: temporal changes. Asia Pac J Clin Nutr 25: 898-910.

29. Seidell JC, Han TS, Feskens EJ, Lean ME. Narrow hips and broad waist circumferences independently contribute to increased risk of non-insulindependent diabetes mellitus. J Intern Med. 1997;242:401–406.

30. Seidell JC, Perusse L, Despres JP, Bouchard C. Waist and hip circumferences have independent and opposite effects on cardiovascular disease risk factors: The Quebec Family Study. Am J Clin Nutr. 2001;74:315–321.

31. Snijder MB, Dekker JM, Visser M, Bouter LM, Stehouwer CD, Yudkin JS, et al. Trunk fat and leg fat have independent and opposite associations with fasting and postload glucose levels: The Hoorn Study. Diabetes Care.2004;27:372–377.

32. Snijder MB, Visser M, Dekker JM, Goodpaster BH, Harris TB, Kritchevsky SB, et al. Low subcutaneous thigh fat is a risk factor for unfavourable glucose and lipid levels, independently of high abdominal fat. The Health ABC Study. Diabetologia. 2005;48:301–308.

33. Snijder MB, Zimmet PZ, Visser M, Dekker JM, Seidell JC, Shaw JE. Independent and opposite associations of waist and hip circumferences with diabetes, hypertension and dyslipidemia: The AusDiab Study. Int J Obes Relat Metab Disord. 2004;28:402–409.

34. Kahn HS, Austin H, Williamson DF, Arensberg D. Simple anthropometric indices associated with ischemic heart disease. J Clin Epidemiol.1996;49:1017–1024.

35. Sparrow D, Borkan GA, Gerzof SG, Wisniewski C, Silbert CK. Relationship of fat distribution to glucose tolerance: Results of computed tomography in male participants of the Normative Aging Study. Diabetes. 1986;35:411–415.

36. Bergstrom RW, Newell–Morris LL, Leonetti DL, Shuman WP, Wahl PW, Fujimoto WY. Association of elevated fasting C-peptide level and increased intra-abdominal fat distribution with development of NIDDM in Japanese-American men. Diabetes. 1990;39:104–111.

37. Nagaretani H, Nakamura T, Funahashi T, Kotani K, Miyanaga M, Tokunaga K, et al. Visceral fat is a major contributor for multiple risk factor clustering in Japanese men with impaired glucose tolerance. Diabetes Care. 2001;24:2127–2133.

38. McNeely MJ, Boyko EJ, Shofer JB, Newell–Morris L, Leonetti DL, Fujimoto WY. Standard definitions of overweight and central adiposity for determining diabetes risk in Japanese Americans. Am J Clin Nutr. 2001;74:101–107.

39. Nakamura T, Tokunaga K, Shimomura I, Nishida M, Yoshida S, Kotani K, et al. Contribution of visceral fat accumulation to the development of coronary artery disease in non-obese men. Atherosclerosis. 1994;107:239– 246.

40. Terry RB, Stefanick ML, Haskell WL, Wood PD (1991) Contributions of regional adipose tissue depots to plasma lipoprotein concentrations in overweight men and women: possible protective effects of thigh fat. Metabolism 40:733–740

41. Snijder MB, Dekker JM, Visser M et al (2003) Larger thigh and hip circumferences are associated with better glucose tolerance: the Hoorn study. Obes Res 11:104–111

42. Snijder MB, Dekker JM, Visser M et al (2003) Associations of hip and thigh circumferences independent of waist circumference with the incidence of type-2 diabetes: the Hoorn Study.Am J Clin Nutr 77:1192–1197

43. Lissner L, Bjorkelund C, Heitmann BL, Seidell JC, Bengtsson C (2001) Larger hip circumference independently predicts health and longevity in a Swedish female cohort. Obes Res 9:644–646

44. Van Pelt RE, Evans EM, Schechtman KB, Ehsani AA, Kohrt WM (2002) Contributions of total and regional fat mass to risk for cardiovascular disease in older women. Am J Physiol Endocrinol Metab 282:E1023–E1028

45. Rebuffe-Scrive M, Enk L, Crona N et al (1985) Fat cell metabolism in different regions in women. Effect of menstrual cycle, pregnancy, and lactation. J Clin Invest 75:1973–1976

46. Rebuffe-Scrive M, Lonnroth P, Marin P, Wesslau C, Bjorntorp P, Smith U (1987) Regional adipose tissue metabolism in men and postmenopausal women. Int J Obes 11:347–355

47. Frayn KN (2002) Adipose tissue as a buffer for daily lipid flux. Diabetologia 45:1201–1210

48. Ravussin E, Smith SR (2002) Increased fat intake, impaired fat oxidation, and failure of fat cell proliferation result in ectopic fat storage, insulin resistance, and type-2 diabetes mellitus. Ann N Y Acad Sci 967:363–378

49. Tiikkainen M, Tamminen M, Hakkinen AM et al (2002) Liverfat accumulation and insulin resistance in obese women with previous gestational diabetes. Obes Res 10:859–867

50. Seppala-Lindroos A, Vehkavaara S, Hakkinen AM et al (2002) Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. J Clin Endocrinol.Metab 87:3023–3028

51. Kelley DE, McKolanis TM, Hegazi RA, Kuller LH, Kalhan SC (2003) Fatty liver in type-2 diabetes mellitus: relation to regional adiposity, fatty acids, and insulin resistance. Am J Physiol Endocrinol Metab 285:E906–E916

52. Kelley DE, Goodpaster BH (2001) Skeletal muscle triglyceride. An aspect of regional adiposity and insulin resistance. Diabetes.Care 24:933–941

53. McGarry JD (2002) Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type-2 diabetes. Diabetes 51:7–18

54. Goodpaster BH, Krishnaswami S, Resnick H et al (2003) Association between regional adipose tissue distribution and both type-2 diabetes and impaired glucose tolerance in elderly men and women. Diabetes Care 26:372–379

55. Bjorntorp P (1990) “Portal” adipose tissue as a generator of risk factors for cardiovascular disease and diabetes. Arteriosclerosis 10:493–496

56. Despres JP, Lemieux S, Lamarche B et al (1995) The insulin resistance-dyslipidemic syndrome: contribution of visceral obesity and therapeutic implications. Int J Obes Relat Metab Disord 19(Suppl 1):S76–S86

57. Terry RB, Stefanick ML, Haskell WL, Wood PD (1991) Contributions of regional adipose tissue depots to plasma lipoprotein concentrations in overweight men and women: possible protective effects of thigh fat. Metabolism 40:733–740

58. Vague J: The degree of masculine differentiation of obesity: a factor determining predisposition to diabetes, atherosclerosis, gout, and uric calculous disease.Am J Clin Nutr 4:20-34,1956

59. Lemer D J, Kannel WB (1986) Patterns of coronary heart diseases morbidity and mortality in the sexes: a 26-year followup of the Framingham population. Am Heart J 11:383-390

60. Wingard DL, Suarez L, Barrett-Connor E (1983) The sex differential in mortality from all causes and ischemic heart disease. Am J Epidemio1117:165-172

61. Witteman JC, Grobbee DE, Kok FJ, Hofman A, Valkenburg HA (1989) Increased risk of atherosclerosis in women after the menopause. BMJ 298:641-644

62. Freedman DS, Jacobsen S J, Barboriak JJ et al. (1990) Body fat distribution and male/female differences in lipids and lipoproteins. Circulation 81:1498-1506

63. Larsson B, Bengtsson C, Bj6rntorp Pet al. (1992) Is abdominal body fat distribution a major explanation for the sex difference in the incidence of myocardial infarction? Am J Epidemio1135: 266-273

64. Seidell JC, Cigolini M, Charzewska Jet al. (1991) Fat distribution and gender differences in serum lipids in men and women from four European communities. Atherosclerosis 87:203-210

65. Despr6s JR Moorjani S, Fefland Met al. (1989) Adipose tissue distribution and plasma lipoprotein levels in obese women: importance of intra-abdominal fat. Arteriosclerosis 9:203-210

66. Despr6s JP, Moorjani S, Lupien PJ, Tremblay A, Nadeau A, Bouchard C (1990) Regional distribution of body fat, plasma lipoproteins, and cardiovascular disease. Arteriosclerosis 10: 497-511

67. Fujioka S, Matsuzawa Y, Tokunaga K, Tarui S (1987) Contribution of intra-abdominal fat accumulation to the impairment of glucose and lipid metabolism in human obesity. Metabolism 36:54-59

68. Despr6s JP, Nadeau A, Tremblay A et al. (1989) Role of deep abdominal fat in the association between regional adipose issue distribution and glucose tolerance in obese women. Diabetes 38:304-309

69. Peiris AN, Sothmann MS, Hennes MI et al. (1989) Relative contribution of obesity and body fat distribution to alterations in glucose insulin homeostasis: predictive values of selected indices in premenopausalwomen. AmJ ClinNutr49:758-764

70. Pouliot MC, Despr6s JP, Nadeau A et al. (1992) Visceral obesity in men: associations with glucose tolerance, plasma insulin and lipoprotein levels. Diabetes 41:826-834

71. Despr6s JP, Allard C, Tremblay A, Talbot J, Bouchard C (1985) Evidence for a regional component of body fatness in the association with serum lipids in men and women. Metabolism 34:967-973

72. Krotkiewski M, Bj6rntorp P, Sj6strOm L, Smith U (1983) Impact of obesity on metabolism in men and women. Importance of regional adipose tissue distribution. J Clin Invest 72: 1150-1162

73. Kvist H, Chowdury B, Gang~rd U, Tyl6n U, Sj6str0m L (1988) Total and visceral adipose-tissue volumes derived from measurements with computed tomography in adult men and women: predictive equations. Am J Clin Nutr 48:1351-1361

74. SjOstr6m L, Kvist H (1988) Regional body fat measurements with computed tomography-scan and evaluation of anthropometric predictions. Acta Med Scand [Suppl] 723:169-177

75. Fager G, Wiklund O, Olofsson SO, Wilhelmsen L, Bondjers G (1981) Multivariate analyses of serum apolipoproteins and risk factors in relation to acute myocardial infarction. Arteriosclerosis 1:273-279

76. Hamsten A, Walldius G, Dahlen G, Johansson B, De Faire U (1986) Serum lipoproteins and apolipoproteins in young male survivors of myocardial infarction. Atherosclerosis 59: 223-235

77. Gordon DJ, Probstfield JL, Garrison RJ et al. (1989) Highdensity lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation 79:8-15

78. Assmann G, Helmut S (1992) Relation of high-density lipoprotein cholesterol and triglycerides to incidence of atherosclerotic coronary artery disease (the PROCAM experience). Am J Cardio170:733-737

79. Austin MA, Breslow JL, Hennekens CH, Buring JE, Willett WC, Krauss RM (1988) Low-density lipoprotein subclass patterns and risk of myocardial infarction. JAMA 260:1917- 1921

80. Crouse JR, Parks JS, Schey HM, Kahl FR (1985) Studies of low density lipoprotein molecular weight in human beings with coronary artery disease. J Lipid Res 26:566-574

81. Seidell JC, Han TS, Feskens EJ, Lean ME. Narrow hips and broad waist circumferences independently contribute to increased risk of non-insulin-dependent diabetes mellitus. J Intern Med. 1997;242:401–6.

82. Seidell JC, Perusse L, Despres JP, Bouchard C. Waist and hip circumferences have independent and opposite effects on cardiovascular disease risk factors: the Quebec Family Study. Am J Clin Nutr. 2001;74:315–21.

83. Lissner L, Bjorkelund C, Heitmann BL, Seidell JC, Bengtsson C. Larger hip circumference independently predicts health and longevity in a Swedish female cohort. Obes Res. 2001;9:644–6.

84. Frayn KN. Adipose tissue as a buffer for daily lipid flux. Diabetologia.2002;45:1201–10.

85. Rebuffe-Scrive M, Enk L, Crona N, Lonnroth P, Abrahamsson L, Smith U, Bjorntorp P. Fat cell metabolism in different regions in women. Effect of menstrual cycle, pregnancy, and lactation. J Clin Invest. 1985;75:1973–6.

86. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9.

87. Frederiksen L, Nielsen TL, Wraae K, Hagen C, Frystyk J, Flyvbjerg A, Brixen K, Andersen M. Subcutaneous rather than visceral adipose tissue is associated with adiponectin levels and insulin resistance in young men. J Clin Endocrinol Metab. 2009;94:4010–5.

88. Piche ME, Lapointe A, Weisnagel SJ, Corneau L, Nadeau A, Bergeron J, Lemieux S. Regional body fat distribution and metabolic profile in postmenopausal women. Metabolism. 2008;57:110 1–7.

89. Lemieux S, Prud'homme D, Bouchard C, Tremblay A, Despr6s JP (1993) Sex differences in the relation of visceral adipose tissue to total body fatness. Am J Clin Nutr 58:463-467

90. J.C. Seidell, A. Oosterlee, M.A. Thijssen, J. Burema, P. Deurenberg, J.G. Hautvast, et al., Assessment of intraabdominal and subcutaneous abdominal fat: relation between anthropometry and computed tomography, Am. J.Clin. Nutr. 45 (1987) 7–13.

91. M. Ashwell, S. Chinn, S. Stalley, J.S. Garrow, Female fat distribution-a simple classification based on two circumference measurements, Int. J. Obes. 6 (1982) 143–152

92. H.S. Kahn, Choosing an index for abdominal obesity: an opportunity for epidemiologic clarification, J. Clin. Epidemiol. 46 (1993) 491–494.

93. W.H. Mueller, M.L. Wear, C.L. Hanis, J.B. Emerson, S.A. Barton, D. Hewett-Emmett, et al., Which measure of body fat distribution is best for epidemiologic research? Am. J.Epidemiol. 133 (1991) 858–869.

94. D.K. Warne, M.A. Charles, R.L. Hanson, L.T. Jacobsson, D.R. McCance, W.C. Knowler, et al., Comparison of body size measurements as predictors of NIDDM in Pima Indians, Diabetes Care 18 (1995) 435–439.

95. M.B. Snijder, J.M. Dekker, M. Visser, L.M. Bouter, C.D. Stehouwer, P.J. Kostense, et al., Associations of hip and thigh circumferences independent of waist circumference with the incidence of type 2 diabetes: the Hoorn Study, Am.J. Clin. Nutr. 77 (2003) 1192–1197.

96. H.S. Kahn, H. Austin, D.F. Williamson, D. Arensberg, Simple anthropometric indices associated with ischemic heart diease, J. Clin. Epidemiol. 49 (1996) 1017–1024.

97. Y.C. Chuang, K.H. Hsu, C.J. Hwang, P.M. Hu, T.M. Lin, W.K. Chiou, Waist-to-thigh ratio can also be a better indicator associated with type 2 diabetes than traditional anthropometrical measurements in Taiwan population,Ann.Epidemiol. 16 (2006) 321–331.

98. L. Piemonti, G. Calori, G. Lattuada, A. Mercalli, F. Ragogna, M.P. Garancini, et al., Association between plasma monocyte chemoattractant protein-1 concentration and cardiovascular disease mortality in middle-aged diabetic and nondiabetic individuals, Diabetes Care 32 (2009) 2105–2110.

99. P.M. Janiszewski, J.L. Kuk, R. Ross, Is the reduction of lowerbody subcutaneous adipose tissue associated with elevations in risk factors for diabetes and cardiovascular disease? Diabetologia 51 (2008) 1475–1482.

100. S. Heshka, A. Ruggiero, G.A. Bray, J. Foreyt, S.E. Kahn, C.E. Lewis, et al., Altered body composition in type 2 diabetes mellitus, Int. J. Obes. (Lond.) 32 (2008) 780–787.

101. Greenlund KJ, Valde`z R, Casper ML, Rith-Najarian S, Croft JB. Prevalence and correlates of the insulin resistance syndrome among Native Americans. The inter-tribal heart project. Diabetes Care 1999;22:441–7.

102. Li C, Ford ES, Zhao G, Kahn HS, Mokdad AH. Waist-to-thigh ratio and diabetes among US adults: the Third National Health and Nutrition Examination Survey. Diabetes Res Clin Pract 2010;89:79–87.

103. Olsen DB, Sacchetti M, Dela F, Ploug T, Saltin B. Glucose clearance is higher in arm than leg muscle in type 2 diabetes. J Physiol 2005;565:555–62.

104. Jen-Kuang Lee 1 , Cho-Kai Wu, Lian-Yu Lin, Chia-Lin Cheng, Jou-Wei Lin, Juey-Jen Hwang, Fu-Tien Chiang.Insulin resistance in the middle-aged women with "Tigerish Back and Bearish Waist".Diabetes Res Clin Pract. 2010 Dec;90(3):e85-7.

105. Berit L Heitmann,1 2 Peder Frederiksen1.Thigh circumference and risk of heart disease and premature death: prospective cohort study.BMJ 2009;339:b3292.

106. Frisch R.E., Body fat, puberty and fertility. Biol Rev Camb Philos Soc, 1984, 59 (2), 161–188,

107. Jeukendrup A., Gleeson M., Sport nutrition. Human Kinetics, Champaign 2010.

108. Aleksandra S, Jadwiga Pietraszewska, Anna Burdukiewicz, Justyna Andrzejewska.The differences in fat accumulation and distribution in female students according to their level of activity.University School of Physical Education, Wroc?aw, Poland.

109. Lukaski H.C., Bolonchuk W.W., Hall C.B., Siders W.A., Validation of tetrapolar bioelectrical impedance method to assess human body composition. J Appl Physiol (1985),1986, 60 (4), 1327–1332.

110. Major-Go?uch A., Miazgowski T., Krzy?anowska-?wi niarska B., Safranow K., Hajduk A., Comparison of fat mass measurements in young, healthy, normal-weight women by bioelectric impedance analysis and dual-energy X-ray absorptiometry [in Polish]. Endokrynologia, Oty?o?? i Zaburzenia Przemiany Materii, 2010, 6 (4), 189–195.

111. Evans J., Lambert M.I., Micklesfield L.K., Goedecke J.H.,Jennings C.L., Savides L. et al., Near infrared reactance for the estimation of body fatness in regularly exercising individuals. Int J Sports Med, 2013, 34 (7), 612–615

112. Mala L., Maly T., Zahalka F., Bunc V., Kaplan A., Jebavy R. et al., Body composition of elite female players in five different sports games. J Hum Kinet, 2015, 45, 207–215

113. Bu?ko K, Lipińska M., A Comparative Analysis of the Anthropometric Method and Bioelectrical Impedance Analysis on Changes in Body Composition of Female Volleyball Players During the 2010/2011 Season. Hum Mov, 2012, 13 (2), 127–131

114. Marieke B Snijder, Jacqueline M Dekker, Marjolein Visser, Lex M Bouter, Coen D A Stehouwer, Piet J Kostense, John S Yudkin, Robert J Heine, Giel Nijpels, Jacob C Seidell.Associations of hip and thigh circumferences independent of waist circumference with the incidence of type 2 diabetes: the Hoorn Study.Am J Clin Nutr. 2003 May;77(5):1192-7.

115. de Vegt F, Dekker JM, Jager A, et al. Relation of impaired fasting and postload glucose with incident type 2 diabetes in a Dutch population: The Hoorn Study. JAMA 2001;285:2109–13.

116. Warne DK, Charles MA, Hanson RL, et al. Comparison of body size measurements as predictors of NIDDM in Pima Indians. Diabetes Care 1995;18:435–9.

117. Carey VJ, Walters EE, Colditz GA, et al. Body fat distribution and risk of non-insulin-dependent diabetes mellitus in women. The Nurses’ Health Study. Am J Epidemiol 1997;145:614–9.

118. Chan JM, Rimm EB, Colditz GA, Stampfer MJ, Willett WC. Obesity, fat distribution, and weight gain as risk factors for clinical diabetes in men. Diabetes Care 1994;17:961–9.

119. Ohlson LO, Larsson B, Svardsudd K, et al. The influence of body fat distribution on the incidence of diabetes mellitus. 13.5 years of follow-up of the participants in the study of men born in 1913. Diabetes 1985;34:1055–8.

120. Lundgren H, Bengtsson C, Blohme G, Lapidus L, Sjostrom L. Adiposity and adipose tissue distribution in relation to incidence of diabetes in women: results from a prospective population study in Gothenburg, Sweden. Int J Obes 1989;13:413–23.

图文推荐