tags:
当前位置 : 首页 > 新闻中心 > 情感家庭 > 正文

你知道哪些与数学有关的小故事?

来源:本站作者:时间:2024-04-10 10:32:38点击:

大一的高数课,我正在zzZZ,讲到阿贝尔定理,高数老师说:阿贝尔一生穷困潦倒,把自己的手稿寄给柯西,被柯西弄丢了,寄给高斯,高斯看都不看,直到一篇论文发表引起轰动,柏林大学决定聘用他,聘书寄到,阿贝尔已经死了两天,享年27岁。

听得我虎躯一阵震吓得爬起来了。高数老师出身农村,在日本留学回来,因为性格内向木讷,头发斑白了还是个副教授,与他同时留学的同学早就功成名就,说起阿贝尔估计也是有点感慨吧。

嫌这个太伤感了可以看看heroes in my heart, @vczh

力荐的打鸡血神书。

楼下有人提起阿贝尔是个帅哥,于是放出一张照片,确实不错

怎么没有人提到这个:北大未名空间jasonsun

的 Some Tales of Mathematicans

摘录如下(剩下的可见bbs),断句稍作改动,免得太bbs风

1.有一次littlewood问hardy,为什么他每次到一个旅馆就会把镜子用毛巾盖起来?

回答是:因为他长得太丑了.

2.Hadamard,Jacques去意大利Bologna开1928年国际数学家大会,期间要坐火车去一个地方。车厢里有很多人在聊天,他觉得十分累,就出了道困难的数学题,众人思考这道题,车厢里马上安静下来了,于是Hadamard就可以睡觉了。

3.Bourbaki是一个法国数学家的集体代名词

Bourbaki的第一篇文章发表在comptes Rendus(法国科学院的一个杂志)上

在1949年Journal of symbolic logic上的一篇文章 "Foundations of mathematics for the working mathematican"中,

Bourbaki教授的地址是University of Nancago

这是一个杜撰的地址,分别是Nancy和Chicago(weil在那里)前后组合

1940年,Boas,Ralph(MR的主编)曾经在Encyclopaedia Britannica上写过一篇文章,揭了Bourbaki的老底,Bourbaki马上反驳说根本没有Boas这个人。

其实,Boas曾经是一群美国数学家的集体笔名。

4.20世纪60年代,Grothendieck领导的代数几何革.命袭卷了整个数学界

那时总有些人对他的理论表示很不理解。

一次Tate John做了一张小纸片,Grothendieck就把它放在他的上衣口袋里,

每当有人提出议疑时,他就会把小卡片拿出来

上面写着

"there may be nilpotent elements in it"

5.Vietoris,Leopold(1891--2002).

可能是世界上最高寿的数学家了

Vietoris是奥地利数学家,1920年在Wien大学获得博士学位,1930-1961在Innsbruck大学任教

Vietoris的主要数学贡献在代数拓扑领域,众所周知的Mayer-Vietoris序列,Mayer在1926/1927年向Vietoris学习代数拓扑

Hirzebruch在1996年9月曾写信问过Vietoris此事,连他都很犹豫给一个105岁的老人写信是不是合适,几周后,Hirzebruch居然收到了回信

除了拓扑学外,Vietoris在概率方面也有工作。

特别是在他103岁时还写过一篇三角级数的文章

6.Cohen,Paul(1934-2007)

是迄今唯一一个在数学基础方面获得Fields的数学家

而且其早年的工作在调和分析方面.

1961年,cohen证明了连续统假设与集合论其它公理的独立性

随后,他被邀请去法国做报告,法国所有的数学基础专家都去了,他是这样开场的:

“过去30年来,没有人对这个问题做出突破性贡献,

但这并不奇怪,因为自Godel以后,没有一流的数学家在这个领域内工作”

补充:

Cohen当年本科(或者是研究生)的时候好像是在Stanford

就曾跟别人说:自己要么在xxx方面做一个平庸的数学家(黎曼几何?)

要么在数理逻辑的基础方面做出重大突破。。。。。。

几年以后他成功了

7.Cohen在chicago大学读研究生时

有一次英国数学家Swinnerton-Dyer来访

Cohen对他说他在Landau的书里读到一个Siegel定理

现在正在考虑把这个定理改进到最优的结果

Swinnerton-Dyer很负责的说,这个东西呀,在我们有生之年是看不到解决的希望了

过了几天,SD主动来找Cohen,说你前几天说的那个东西已经被我的同胞Roth,Klaus解决了,特来向你道歉

过了几年,Roth因为这项工作被授于Fields奖

8.poincare猜想引无数英雄竟折腰

Conner,Andrew是Auburn university的一个数学教授,一生痴迷于poincare猜想的证明,

在他1984年43岁因癌症去世前,他又宣布了他的一个证明,并把Haken和另外四个数学家叫到病床前检查他的证明,但是他此时已经不能和别人讨论问题了。

Rourke,Colin是英国Warwick大学的数学教授,1985年他的一个博士后Rego,Eduardo证明了一个定理,Rourke马上发现这个定理可以推出poincare猜想。1986年11月,他在UC Berkeley开了一个讨论班讲他的证明,听众有Kirby,Gabai,Casson,Rourke的一个学生Kazez,还有Kirby的两个研究生Hirsch,Mike和Walker,Kevin

在最后一天,错误终于被发现了,这是Haken六个月前指出的,很不幸,Rourke最终没有能干掉它

9.在数学中,有一些表达十分简洁的命题却揭示了深刻的数学内涵

比如Goldbach猜想和Poincare猜想,正是因为如此他们都吸引了大批的数学家去攻克这些问题,poincare猜想是低维拓扑中的中心问题,Papakyriakopoulos,Christos一个在princeton

工作的希腊数学家,对低维拓扑有重要贡献,他去世后,人们发现他的一个160页的手稿,是一个证明poincare猜想的大体计划,在其中一页的上面,有一个“引理14”可是没有给出证明

1963年,一个德国数学家听从他的妻子(也是一个数学家)建议,去搞poincare猜想,此前他做的是和钮结有关的问题,不过他的复杂的非代数方法没有引起主流数学界的关注。经过10年不断的失败,他实在是受不了了,改行做四色猜想的证明,不出几年就成功了。这个人就是Haken Wolfgang,有一类以他的名字命明的流形(Haken manifold)在poincare猜想的研究中十分重要

10.Gabai,David

2004年获得Veblen奖,低维拓扑专家

有人说如果Thurston说poincare猜想被证明了,并把它写在一页纸上,大家会争着去搞到他的手稿

如果Gabai说poincare猜想被证明了,大家肯定会相信他,但没有人会去读他的证明

11.据统计,在数学类的各类出版物中,有一半以上是Springer-Verlag出版的

比如Lecture Notes in Mathematics,Graduate Texts in Mathematics

Springer-Verlag是Julius Springer在1842年开创的,最初只是一家书店,后来业务不断壮大。

Julius Springer是一位国际象棋的爱好者,从1881年开始,Springer-Verlag用象棋中的马

的图案作为其标志,因为Springer这个词在德文中意即“象棋中的马”。

1906年,Ferdinand springer开始经营这个出版社,据说他本人是个生物遗传学家,并且是Springer-Verlag的一个期刊的编辑。

在二战快结束时,他被俄军俘掳,审训官问他是个干什么的人,他回答说是个出版商,出版了100多种杂志,并把刊名都写出来.

当他写到90多个时,那个审训官说好吧,你可以走了,我在这个杂志上发表过文章!不过建议你还是跟着我们,以免再被不懂科学的人抓起来

12.Hilbert晚年时有一次在家里举行一个宴会

其间他的夫人发现他戴了一条脏领带,于是勒令他去换一条干净的。

但是例了很久Hilbert也没有回来,夫人回去一看,结果Hilbert已经躺在床上睡觉了

按照Hilbert的逻辑,就是拖外套,解领带,拖衬衣,等等

然后睡觉

13.Gleason,Andrew(1921-2008)

是美国数学家,1986年国际数学家大会主席,在Hilbert第五问题上有重要贡献

大概也是近年数学界唯一一个没有博士学位的人

一般人很难和他与越南战争联系在一起

据说Gleason1940年在Harvard上大学时,有一个室友叫Bundy,McGeorge(1919-)

原先打算去学数学,但是他发现Gleason也学了数学,怕是以后在数学界是没有出头之日了,所以就选择了政治。

现在人们都知道,Bundy发动了越南战争。

14.陈省身和丘成桐下了一盘中国象棋。后来郑绍远问丘成桐结果如何?

丘成桐声称自己赢了,后来丘成桐没有再和陈先生下过中国象棋。

丘成桐的话也许是可信的,因为后来他赢了郑绍远以后,

也不再和郑绍远下中国象棋了

15.Abhyankar,Shreeram S (1930-2012)

原来在Purdue University,研究代数几何中的奇点解消问题

是Zariski在Harvard的学生

Abhyankar早年在University of Bombay与Birkhoff,Garrett学习代数,后来听了Zariski的一个关于射影几何的演讲决定去和Zariski学代数几何

Zariski对学生的要求十分严格

据说有人曾警告他说:“如果你永远不想毕业,那就去跟Zariski好了”

16.Zariski,Oscar

20世纪60年代在哈佛大学建立了代数几何中的“哈佛学派”,

据说他是唯一一位在活着的时候把半身像挂在哈佛大学数学教室里的人

Zariski很少收学生,有时既便收了,也马上推荐给其它教授

不过Zariski的学生中,就有两位Fields奖得主,

其中一位广中平佑(Hironaka)是Zariski在日本淘来的。

1956年,Zariski访问日本,参加了秋月康夫(Akizuki,Yasuo)的一个讨论班,这个讨论班

的成员有永田雅宜(Nagata,Masayosi)松村英之(Matsumura,Hideyuki)户田宏(Toda,Hirosi)伊藤清(Ito,Kiyosi),井草准一(Igusa,Jun-Ichi)等人,后来都成了著名的数学家

广中平佑在上面做了一个报告,尽管他的英语表达让Zariski很不舒服,

但是确出人意料的推荐广中去哈佛大学留学,广中后来回忆说:这对当时的日本青年来说,was a case of Dream-Come-True

17.日本人好像是天生英语能力不行

广中平佑也不例外

刚到美国时,由于经济紧张,Zariski给他介绍了一个工作,让他去给大学研究生院的学生教课,每次给5美元。

结果学生听不懂广中说的英语,上了两次就把他辞了。

Zariski看他买书没有钱,就从自己的工资袋里拿出几张纸币借给他,后来据广中说他都还清了

18.据说thom曾经说过做代数几何的都是废物点心。

因为他们一遇到解决不了的问题就会说其实真要是解决了也没有什么意义

奇点的解消就属于这种问题,有人说要解决它必须等到代数几何发展到一定程度,

可是真要是达到那个程度,这个问题对代数几何也就没有什么意义了

广中在思考这个问题时曾和Grothendieck讨论过,可是Grothendieck对这个问题没有兴趣

广中在Brown university任教时,在有一次在harvard遇见Zariski,Zariski把他叫住问他最近在做什么,广中回答说他正在考虑一般的奇点解消问题,Zariski自己在低维的情形做过重要贡献.

他想了一会说:“you need strong teeth to bite in!”

用广中自己的话说就是“勒紧裤腰带加油干!”

19.在Brown university工作的第二年

广中平佑基本上就把一般的奇点解消问题解决了消息公布以后,Zariski似乎还有些不太相信

有一次他问广中:

is your resolution still a theorem?

然后就开始写论文,通常是晚上十点开始写,写到第二天早晨五点钟上床睡觉,他的妻子广中和歌子不久起床后数一数写了几页,然后用打字机打印出来

一直这样写了两个月,终于完成了

论文发表在annals of mathematics上面

据说原稿有麻省的电话号码簿那么厚,

所以以后数学界用“广中的电话簿”来指那篇文章

后来广中回忆说:那段时间把精力都用在这个问题上,每天只睡三四个小时,结果是在学校上课只能是应付。

上他课的学生算是倒霉了,呵呵

20.Erdos,Paul据说是随时随地都能思考数学问题

他的大脑向每个人打开

下面是他在庆祝我国数学家柯召80寿辰时的一段话(原话英文可见链接)

”我曾经来过中国两次,第一次在1960年,我待了大概三个星期。

柯召和华罗庚接机。

华也是我的老友之一,可惜他已不在人世。

在1986年夏天,我参加了在济南的中美组合大会,同时在北京逗留了一会.

有幸再次碰到柯,他的女儿和孙子。我希望能够在不远的将来再次见到柯。

But enough of the idle talk“

据说erdos的典型的信件时这样的:

“我现在在澳大利亚,明天去匈牙利,设k是最大的正整数以满足……”

我记得在看他的一本传记的时候书中特地影印了一封他的信,并且强调信中居然没有提到数学……

21.柯召在英国Manchester大学的导师是Mordell,他给柯召的第一个题目是“关于Minkowski猜测”

柯召专心思考了整整一周,结果毫无头绪

后来Mordell对他说:“这个问题我搞了三年也没有解决”

两个月后,柯召完成了一篇很有创见的论文,Mordell让他去伦敦数学会报告这篇文章,

在这之前,还没有中国人登例伦敦数学会的讲台.

Hardy当时也在座,对此印象极深,后来他在主持柯召的博士论文答辩时说:

“你已经做过报告了!”

22.Schwartz,Laurent(1915-2002)

在参加巴黎高师入学考试的口试时,听到考官问他前面的那个人一个问题,

大意是为了有某个性质,两个数x,y要满足什么代数关系.

那个人很快就答出来了,x,y关于一个一元二次方程的根是调和共轭的,并给出一个几何解法,因次他通过了考试

后来Schwartz向那个人表示祝贺能想出这么巧妙的解法。

“你知道,我已经是第三次做这道题了!”

PS

过去欧洲的学生参加大学预科考试都有专门的“教授”指导,这些人一般不做学术研究,但要求精通考试训练

--

23.Schwartz,Laurent的岳父是Levy,Paul(1886-1971)

一个干瘪的法国老头,是Hadamard的学生在概率和泛函分析方面工作,

functional analysis这个词就是他最先引进的

有一次Schwartz问他是否知道Lebesgue’s theorem of density的简单证明

“我见到过几个,但是现在都记不得了,不过我可以想一下找出一个证明”

半个小时以后,他给出了一个漂亮简洁的证明

6个月后,当Schwartz再次向他提到这个证明时,

“啊!多么好的想法!我从未想到过这个”

当Schwartz告诉他这就是他6个月前发现的证明,

Levy根本不相信

24.Levy,paul这个人数学做的虽然不错,但是记忆力却很差

有一次Errera,Alfred(1886-1960)(Landau的一个学生)为Levy举办了一场晚宴

第二天,Errera碰见Levy,毕恭毕敬的说:

“我很高兴昨天度过一个美好的夜晚”

“恩?那么你昨晚在哪?”

25.Weil,Andre(1906-1998)

一个不懂物理自以为数学很牛的法国人

在一次数学系圣诞宴会上,坚持把自己列为有史以来最牛的十个数学家之一

还有一次在Princeton的一次聚会上,一个研究生问

每个人谁在20世纪数学家中排第一,当问到weil时,回答是Siegel,Ludwig(1896--1981)

“那么谁是第二?”

weil笑了,然后指了指他自己...

有一天weil碰见Wiener,两个人都学了点中文,就用“中文”聊了半.

chern正好当时在场,就问旁边的一个学生

“请问你能告诉我他们说的是哪国语言吗?”

26.20世纪50年代,weil和Halmos,paul(1913-)同是Chicago大学的数学教授

有一次weil读到一篇揭露Bourbaki“骗局”的文章,马上署名Bourbaki写信给编辑部,企图说明说Bourbaki这个人是存在的,并说他最近被ASL(Association for Symbolic Lgic)邀请去作报告,还说可以让Chicago大学数学系主任Mac Lane,Saunders(1909-2005)做证

然后weil便气势凶凶的闯进Mac Lane的办公室,把这封信往桌子上一扔,然后说

“Saunders,如果你不告诉他们事实‘真相’,我以后就再也不跟你说话!”

Mac Lane 没有办法,只好迫于压力写了一封含糊其词的“证明信”

至于Halmos,Mac Lane后来抱怨说,我们并没有给他加工资,可是那家伙仍赖在Chicago大学不走

27.1950年在美国Cambridge开国际数学家大会时,Hadamard,Jacques被怀疑是啦产檔因此没有拿到美国的签证,

法国那一次国际数学家大会一共去了28人,其中16人表示如果Hadamard不去,他们也不去

后来经过外交努力,签证终于通过了

Bers,Lipman(1914 - 1993)在二战时有一次路过美国,美国zf马上把他的护照给扣下了

Bers提出强烈的抗议:

“but how can i live without a passport?!

i am naked i can‘t walk!”

据说官方的答复是:

“you walk with your legs,not with a passport”

28.在数学界有一个众所周知的serre猜想,它是说

“域上的多项式环上有限生成投射模是否一定是自由的?”

这是serre在1955年FAC中提出来的,

其实它最早是Grothendieck在给serre的一封信里出现的

后来Grothendieck在讨论班上提出了Riemann-Roch定理的一个一般的证明,也没有

最后发表,而是由serre和Borel整理发表在Bull.Soc.Math.France上面

29.Grothendieck 1951年刚到法国Nancy时,写了一篇50多页的文章给Dieudonne,题目是:

”Integration with values in a topological group”

内容很详尽,但是没有什么意思

Dieudonne把Grothendieck教训了一顿,告诉他应该研究有意义的数学问题,为了抽象而抽象是没有前途的。

后来Dieudonne 和Schwartz在一篇文章最后提出了14个未解决的问题,并让Grothendieck去试试

几天后,当Grothendieck再次出现在他们面前时,一半的问题已经被解决了

从此,法国数学界开始对这个没有接受正规数学训练的小子刮目相看了

30. Grothendieck和serre都是当代法国的数学名家

两个人的风格可以说是迥然不同。

Grothendieck的思维方式是天马行空般从一个领域到另外一个领域,大刀阔斧的开创出新的数学领域而不注重细节

serre的风格比Grothendieck细腻的多,他的脑子里有许多具体的问题

有一次讨论班上,Grothendieck写了几黑板的数学问题

serre则只管看他带来的预印本,最后Grothendieck问是否可以把这些问题推广?

serre于是放下预印本想了一会,然后举出一个反例

有趣的是虽然Grothendieck和serre在1955年就开始通信讨论问题,但他们从来就没有一起发表过文章

31.Thom,Rene(1923-2002)

和Grothendieck一样,都是自己有强烈的创造欲望,而不愿意去跟随别人

有一段时间在IHES(Institut des Hautes Etudes Scientifiques)和Grothendieck是同事。

Thom曾经和Grothendieck交谈过几次

但是每一次Grothendieck都是很快就用自己的那一套理论去理解问题

而Thom又不愿意去学习Grothendieck的理论

所以以后他们就各自独立的做自己的工作

后来Grothendieck写信给Thom说Thom那段时间太懒惰了

呵呵

32.Serre,Jean-Pierre(1926-)

1954年28岁拿到Fields奖

虽然数学做的不错,但是也是那种很吊的数学家

Bott说serre是那种叫做“smart mathematician”的人

在公共场合你看到他看报纸,下棋,很少看到他在做数学

如果你问serre一个问题,他会马上告诉你答案,否则就是拒绝回答。

后一种情况如果你再问他是否想过这个问题时,他会说如果不知道答案就没法思考!

据serre的夫人说serre常常是半夜起来做数学,

而serre自己却说他最重要的数学发现都是在睡觉的时侯想出来的!

33.在这个世界上可能没有人比serre对具体问题和抽象推广的关系把握的更好的了

serre的一个学生曾经回忆说在他做serre的PhD时,每当他遇到研究中的困难时,就会和serre在巴黎的一个小茶馆里约会,

serre通常会比预定的时间早一点到达,然后要他把问题表述一遍,serre听完后会给出几个例子来说明他的学生的这种表达方式并不能得到好结果,并提出自己的见解

很多人说serre的行文风格非常清晰

据说有一次serre在讲课的时侯描述了一个环,这时有个听众问他这个是不是chow环

回答是

“I mean the ring studied by Chow and Samuel”

34.1885-1886年的《数学学报》公布了4个征解题目

这是由瑞典与挪威国王奥斯卡二世设立的

其中第一个问题就是现在所谓的n体问题

现在大家都知道,poincare由于在这一问题上的一篇270页的文章而获奖,论文发表在1890年的

《数学学报》第13卷上

1985年,University of Minnesota的McGehee,Richard在Mittag-Leffler的住处发现了一份《数学学报》13卷的备份,发现上面poincare的文章与人们所看到的不一样。

原来,poincare在文章发表后发现一个重大错误,于是Mittag-Leffler收回了所有已发行的《数学学报》,可能是由于秘书的疏忽,这一期被保存了下来,在它的封面上用瑞典语写着:

“销毁该版的所有刊物”

讲一个我自己听到的故事吧。

有一位年轻的数学工作者,新婚期间和妻子度蜜月——我忘了他的具体职位了,既然是新婚那从年龄推断应该还不是教授吧。。然后他在蜜月期间犯了一个很可怕的错误:他打开了自己的工作邮箱,开始查收邮件。结果他收到自己领域内另一位年轻人的邮件,对方指出他前不久发表的一篇论文的主要结论是错误的,还把构造出的反例发过来了——对一个数学工作者来说,收到这种消息的惊恐程度不亚于家中失火。。可想而知他已经完全没什么心思度蜜月了,专心修改自己的论文。——最后结果我忘了怎么回事,好像确实是证错了,只能撤稿。。

我之所以知道这个故事,是因为发邮件的当事人现在就在我们系做助理教授。。他当时显然不知道那个可怜人正在度蜜月。。所以大家学到了两点:第一,永远不要在蜜月期间与外界做任何与工作相关的交流;第二,永远不要在一个人蜜月期间发这种坏消息。。

哦对了,他和他妻子现在应该还在一起,嗯。

集合论里跟"薛定谔的猫"有异曲同工之妙的一个小故事: Vopenka's Principle的来源

上个世纪60年代左右集合论刚刚开始流行起研究各种各样的大基数模型(粗略地说, 大基数是那些大到ZFC无法证明它们存在的基数. 也就是说我们可以研究"ZFC+某大基数存在"这类的公理系统的一致性和推论之类), 一时间各种五花八门的大基数公理层出不穷. 数学家Petr Vopenka认为这个现象就像生物学家去研究独角兽一样荒谬, 为了展示当时这些大基数公理有多荒谬, Vopenka提出了一个(至少在他眼里)非常不靠谱的大基数公理: Vopenka's Principle, 以期望接下来几年内有人能研究这条公理, 并且再过几年后有人能证明这条公理是不自洽的(也就是说大家花了好几年来研究一堆nonsense).

Vopenka's Principle有好几个等价的表述形式, 可能最容易被主流数学界理解的是如下:For every proper class of simple directed graphs, there are two members of the class with a homomorphism between them

或者在范畴论中:every full complete (cocomplete) subcategory of a locally presentable category is reflective (coreflective)

搞笑的是, 的确接下来很长的时间都有人在研究Vopenka's Principle, 然而一直没有人能证明它是不自洽的, 以至于越来越多人相信Vopenka's Principle是正确的, 完全违背了当初提出来的目的.

(跟"薛定谔的猫"异曲同工的地方就是当初薛定谔提出这个思想实验的目的是为了展示哥本哈根解读是有多荒谬, 然而现在大多数人都认为薛定谔的猫展现了哥本哈根解读有多"酷")

故事来源于Adámek&Rosicky, Locally Presentable and Accessible CategoriesThe story of Vopěnka's principle (as related to the authors by Petr Vopěnka) is that of a practical joke which misfired: In the 1960's P. Vopěnka was repelled by the multitude of large cardinals which emerged in set theory. When he constructed, in collaboration with Z. Hedrlín and A. Pultr, a rigid graph on every set (see Lemma 2.64), he came to the conclusion that, with some more effort, a large rigid class of graphs must surely be also constructible. He then decided to tease set-theorists: he introduced a new principle (known today as Vopěnka's principle), and proved some consequences concerning large cardinals. He hoped that some set-theorists would continue this line of research (which they did) until somebody showed that the principle was nonsense. However the latter never materialized — after a number of unsuccessful attempts at constructing a large rigid class of graphs, Vopěnka's principle received its name from Vopěnka's disciples. One of them, T. J. Jech, made Vopěnka's principle widely known.

在 BBS 盛行的年代收集到的,现在出处貌似找不到了~~~

PS:这个应该是原出处,希望有人能够更正确定。原作者姓名:北大未名 ukim原出处:北大未名,Mathematics 数学原文链接:https://bbs.pku.edu.cn/v2/collection.php?path=groups%2FGROUP_3%2FMathematics%2FD4335A993%2FD5773D280%2FD742F2C98

(1)

一个英国某大学的数学教授发现自己家的下水道堵了,就请来一个水管工来修。30分钟后,水管疏通了。教授相当满意水管工的表现,但当他看到账单后不禁大叫:“what!就30分钟你收的钱够我一个月收入的1/3了!我去当水管工好了!”。水管工说,“你可以去啊。我们阔司正招人呢,还包培训。不过你得说你只是小学毕业。公司不喜欢学历太高的人”。于是教授就去参加培训,当了水管工。他的收入一下翻了三倍。他比以前高兴多了。几年后,公司突然决定把水管工们的文化水平提高到初中毕业,便要求旗下的工人们都去上夜校。夜校的第一堂课是数学。老师想先看一下这些水管工的基础有多好,于是他随便抽了一个人上来写圆面积的公式。这个教授被抽中了,不过干了这么多年水管工,他已经忘了圆面积的公式是PI * R^2。于是他只好从头推导:把圆无限分割后积分。但他得出的结果是负的PI * R^2。尴尬ing,教授从来又来,结果还是负的。他非常尴尬,于是回过头向教室里坐着的几十个水管工同事求助。只见这些同事正在交头接耳,纷纷给他说:把积分上下限交换一下。

(2)

数学家、生物学家和物理学家坐在街头咖啡屋里, 看着人们从街对面的一间房子走进走出.他们先看到两个人进去. 时光流逝. 他们又看到三个人出来.

物理学家:“测量不够准确.”

生物学家:“他们进行了繁殖.”

数学家:“如果再进去一个人,那所房子就空了”

(3)

工程师、化学家和数学家住在一家老客栈的三个相邻房间里. 当晚先是坤程师的咖啡机着了火, 他嗅到烟味醒来, 拔出咖啡机的电插头, 将之扔出窗外,然后接着睡觉.

过一会儿化学家也嗅到烟味醒来, 他发现原来是烟头燃着了垃圾桶. 他自言自语道:“怎样灭火呢? 应该把燃料温度降低到燃点以下, 把燃烧物与氧气隔离. 浇水可以同时做到这两点.” 于是他把垃圾桶拖进浴室, 打开水龙头浇灭了火, 就回去接着睡觉.

数学家在窗外看到了这一切, 所以, 当过了一会儿他发现他的烟灰燃着了床单时, 他可一点儿也不担心. 说:“嗨, 解是存在的!”就接着睡觉了.

(4)

物理教授走过校园,遇到数学教授。物理教授在进行一项实验,他总结出一个经验方程,似乎与实验数据吻合,他请数学教授看一看这个方程。一周后他们碰头,数学教授说这个方程不成立。可那时物理教授已经用他的方程预言出进一步的实验结果,而且效果颇佳,所以他请数学教授再审查一下这个方程。又是一周过去,他们再次碰头。数学教授告诉物理教授说这个方程的确成立,“但仅仅对于正实数的简单情形成立。”

(5)

工程师、物理学家和数学家同时接到一个任务:将一根钉子钉进一堵墙。工程师造了一件万能打钉器,即能把任何一种可能的钉子打进任何一种可能的墙里的机器。物理学家对于榔头、钉子和墙的强度做了一系列的测试,进而发展出一项革.命性的科技——超低温下超音速打钉技术。数学家将问题推广到N维空间,考虑一个1维带扭结的钉子穿透一个N-1维超墙的问题。很多基本定理被证明...当然啦,这个题目之深奥使得一个简单解的存在性都远非显然。

(6)

一位农夫请了工程师、物理学家和数学家来,想用最少的篱笆围出最大的面积。工程师用篱笆围出一个圆,宣称这是最优设计。物理学家将篱笆拉开成一条长长的直线,假设时间允许,他可以把木纤维拉的和赤道一样长,他认为围起半个地球总够大了。数学家好好嘲笑了他们一番。他用很少的篱笆把自己围起来,然后说:“我现在是在外面。”

(7)

物理学家和工程师乘着热气球,在大峡谷中迷失了方向。他们高声呼救:“喂——!我们在哪儿?”过了大约15分钟,他们听到回应在山谷中回荡:“喂——!你们在热气球里!”物理学家道:“那家伙一定是个数学家。”工程师不解道:“为什么?”物理学家道:“因为他用了很长的时间,给出一个完全正确的答案,但答案一点用也没有。”

(8)

常函数和指数函数e的x次方走在街上,远远看到微分算子,常函数吓得慌忙躲藏,说:“被它微分一下,我就什么都没有啦!”指数函数不慌不忙道:“它可不能把我怎么样,我是e的x次方!”指数函数与微分算子相遇。指数函数自我介绍道:“你好,我是e的x次方。”微分算子道:“你好,我是d/dy!”

(9)

物理学家、天文学家和数学家走在苏格兰高原上,碰巧看到一只黑色的羊.“啊,”天文学家说道,“原来苏格兰的羊是黑色的.”“得了吧,仅凭一次观察你可不能这么说.”物理学家道,“你只能说那只黑色的羊是在苏格兰发现的.”“也不对,”数学家道,“由这次观察你只能说:在这一时刻,这只羊,从我们累察的角度看过去,有一侧表面上是黑色的.”

(10)

一天,数学家觉得自己已受够了数学,于是他跑到消防队去宣布他想当消防员。消防队长说:“您看上去不错,可是我得先给您一个测试。”消防队长带数学家到消防队后院小巷,巷子里有一个货栈,一只消防栓和一卷软管。消防队长问:“假设货栈起火,您怎么办?”数学家回答:“我把消防栓接到软管上,打开水龙,把火浇灭。”消防队长说:“完全正确!最后一个问题:假设您走进小巷,而货栈没有起火,您怎么办?”数学家疑惑地思索了半天,终于答道:“我就把货栈点着。”消防队长大叫起来:“什么?太可怕了!您为什么要把货栈点着?”数学家回答:“这样我就把问题化简为一个我已经解决过的问题了。”

(11)

一个数学家、物理学家和工程师,来到了一个农场,这个农场养的鸡生病了,农夫试过了各种方法,兽医也没有办法,一个动物学教授在仔细研究之后建议农夫尝试去请教一下别的科学家。数学家仔细观察了那些鸡,并且做了一些测量,然后计算了很多次,并且做了大量的统计分析,但是最后他最后得出结论说他没有办法找出那里出了问题。工程师搬来一大堆各种仪器,让后对鸡进行了了各种测量,包括比较正常的鸡和生病的鸡的重量等等,但是他也没有办法得出任何有用的结论。最后轮到物理学家了,他只是看了一眼那些鸡就开始计算起来,经过大概一个小时的计算,他终于说:“我已经找到挽救你的鸡的方法了,不过这种方法只对在真空中的球形的鸡有效。”

(12)

证明所有大于2的奇数都是质数,不同专业的人给出不同的证明:

数学家:显然这是错误的命题,举一个反例9即可。

物理学家:3是质数,5是质数,7是质数,9是实验误差,11是质数,......

工程师:3是质数,5是质数,7是质数,9是质数,11是质数,......

计算机程序员:3是质数,5是质数,7是质数,7是质数,7是质数,......

统计学家:让我们来试几个随机抽取的数:17是质数,23是质数,11是质数,......

(13)

Pi是什么?

数学家:Pi是圆周长与直径的比.

工程师:Pi大约是22/7.

计算机程序员:双精度下Pi是3.141592653589.

营养学家:你们这些死心眼的数学脑瓜,"派”是一种既好吃又健康的甜点!

(14)

有两个数学家在争论现在大众对数学了解的程度,一个比较乐观,另一个比较悲观,谁也说服不了谁。争到要吃中饭的时候,大家决定暂停争论,先吃饭。悲观的那个有点事,叫乐观的那个先去饭馆占张桌子,他随后就到。乐观的那个跑到饭馆里坐下,眉头一皱计上心来,把服务员小女孩叫过来对她说:“等一会儿我会问你个问题,你不管我问什么,你就说:‘三分之一乘以X的三次方。’”“三分之一乘以……X的……三次方?”“对啦,就是这,别忘了。”然后悲观的那个来了,两人又接着争。乐观的那个就说:“让我们来看看吧。”就问在邻桌服务的服务员小女孩:“小女孩,X平方的积分是什么?““三分之一乘以X的三次方。”小女孩想也没想头也没抬回答得挺快,离开后,她又回来补充了一句:“嗯——还要加上一个常数项。”

备注:以上内容来自北大未名,内容来源网络,侵删。

《一个数学家的辩白》:数学大师 G.H.Hardy 的作品,讲述了一位数学大师的心路历程。

如果想了解黎曼猜想,其实可以阅读卢昌海这本小册子,讲得非常有意思,把黎曼猜想的发展,数学家的贡献,用通俗易懂的语言描述出来了,是一本非常不错的黎曼猜想科普书籍,里面的数学家趣事和各种故事都不少。

《惰者集》:菲尔兹奖和沃尔夫奖得主小平邦彦写的书籍,记述了数学家对数学的独到理解,文笔幽默,深入浅出。同时,书中还辑录了小平邦彦先生在普林斯顿高等研究院时期,与各位数学大家交流的趣闻轶事,对深入理解数学和数学教育具有深刻启示意义。

图文推荐